Achieve the ultimate in color performance. The 24” NEC MultiSync LCD2490WUXi² delivers an entirely new perspective to your desktop. Color and brightness uniformity were paramount in the design of this high-performance display, making it ideal for graphic arts, desktop publishing, photography and other color-critical environments. In addition, with its wide-format design (16:10 aspect ratio), which provides roughly the same work area as two smaller-sized displays, you can simultaneously view/work in multiple application windows.

With its multitude of leading-edge capabilities, combined with groundbreaking design, the LCD2490WUXi² could easily be considered the most intelligent visual display solution to date.

- Color gamut ideal for sRGB applications
- Auto Luminance control with X-Light™ Pro backlight/sensor design for consistent brightness and color
- ColorComp™ technology compensates for slight variations in luminance and color uniformity, providing even color across the screen
- IPS active matrix LCD provides superior screen performance, including wide viewing angles, lifelike flesh tones and dark black levels
- Supports internal programmable 12-bit lookup tables (LUTs) for calibration
- Designed for landscape or portrait usage without degradation of performance or the display’s lifecycle
- Ambient light sensor and automatic backlight adjustment allows for use in any lighting conditions
- Digital and analog inputs with true MultiSync support for non-native resolutions
The LCD2490WUXi’s design allows you to adjust the display to your exact ergonomic preferences. In addition to tilt and swivel functionality, the height adjusts up to 150mm, and the display pivots between landscape to portrait orientations.

Achieve complete color and brightness uniformity. By nature, LCD panels contain uniformity errors, which are visible as slightly brighter or darker areas on the screen. To combat this inherent trait, each LCD2490WUXi display is individually characterized during production using a fully automated system that measures multiple points across the screen at different gray levels. These measurements are used to build a 3-D correction matrix stored inside the display. This data is used to compensate for the uniformity not only as a function of position on the screen but of gray level as well. In turn, this technology, called ColorComp, reduces the non-uniformity to virtually unnoticeable levels and applies a digital correction to each pixel on the screen to compensate for differences in color and luminance.